Effect of through-thickness compression on the microstructure of carbon fiber polymer-matrix composites, as studied by electrical resistance measurement
نویسندگان
چکیده
Compression in the through-thickness direction (as in fastening) resulted in reversible and irreversible changes in the microstructure of continuous carbon fiber epoxy-matrix composites, as shown by electrical resistance measurement during dynamic compression. The extent of fiber-fiber contact across the interlaminar interface was increased, with partial irreversibility even at a low stress amplitude of 1 MPa. Within a lamina, fiber squeezing in the through-thickness direction and fiber spreading in the transverse direction occurred upon fastening compression, with partial irreversibility at a stress amplitude of 100 MPa or above. For a single laminae beyond 400 MPa, the lessening of fiber squeezing in the through-thickness direction during unloading dominated over the fiber spreading in the transverse direction during loading. C © 2006 Springer Science + Business Media, Inc.
منابع مشابه
Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical- resistance-based through-thickness strain sensing
Piezoresistivity (change of the volume electrical resistivity with strain) in continuous carbon fiber polymer-matrix structural composites allows electrical-resistance-based strain/ stress sensing. Uniaxial through-thickness compression is encountered in fastening. As shown for a 24-lamina quasi-isotropic epoxy-matrix composite, compression results in (i) strain-induced reversible decreases in ...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملEffect of Carbon Nanotube and Surfactant on Processing, Mechanical, Electrical and EMI-Shielding of Epoxy Composites
Dispersing nanoparticles in a polymer matrix is intrinsically challenging due to unfavorable entropic interactions between the matrix and the nanoparticle. In this research dispersion of nanoparticles in polymer matrix was studied and the effect of dispersion on properties was investigated. The properties of polymer composite depend on the type, size, shape, concentration of nanoparticles, and ...
متن کاملOxidation of ZrB2-SiC Composites at 1600 °C: Effect of Carbides, Borides, Silicides, and Chopped Carbon Fiber
The aim of this work is to optimize the oxidation resistance of ZrB2-SiC-based composites with different additives. Effect of nine factors including SiC, Cf, MoSi2, HfB2 and ZrC contents, milling time of Cf (M.t) and SPS parameters such as temperature, time and pressure on oxidation resistance in four levels was investigated. Taguchi design was applied to explore effective parameters for ...
متن کامل